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Abstract

A method is presented for modifying the truncation error of a given finite difference scheme approximating a non-

linear evolution equation. The new scheme has several advantages over the original. It is higher order, in the absence of

time derivatives, has the same time-step requirements, it removes nonphysical oscillations, and it is not less accurate

than the original scheme. The idea applied to a finite difference scheme approximating a geophysical flow produces

a scheme consistent with the accuracy of the original scheme, but on a mesh three times more refined.

� 2005 Elsevier Inc. All rights reserved.
1. Introduction

The difference between the nodal values of a solution of a nonlinear evolution equation (PDE) and the

values computed from a finite difference scheme approximating the PDE are, of course, driven apart by the

truncation error – that is, the error produced by replacing continuous derivatives with discrete derivatives.

In special cases the true nodal values and the computed values can be shown to be close for all time (as in
the autonomous heat equation). In general however, the truncation error leads to an instability which

drives the two apart exponentially in time. Reducing the size of the truncation error leads to an increase

in the accuracy of finite-time trajectories. Moreover, the long-time behavior can be address from a dynam-

ical systems point of view: a smaller truncation error, in appropriate norms, implies invariant manifolds of

the truncated system and those of the PDE are closer. This implies the structure of attractors is better pre-

served [6,8,9].

In this paper we consider a method of modifying the truncation error of a given finite difference scheme

approximating a PDE. The original scheme can be any order. We modify the original scheme, but we insist
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several constraints apply. First, the new scheme cannot, in any parameter regime, be less accurate than the

original; the new scheme must have the same or better time-step restrictions.

The results here are similar to those obtained using compact difference schemes [1–3]. In particular, we

derive in many cases a higher-order scheme which uses the same spatial stencil as the lower-order scheme

from which the modified scheme is derived. The compact differences are constructed by using the form of
the PDE at steady state to express certain higher-order derivatives in the truncation error in terms of lower-

order derivatives. If the time derivative is not part of the principal balance, as in a quasi-stationary flow,

then the new scheme will be higher order. It will have the accuracy, and possess similar characteristics

of the original scheme but on a more refined mesh.

The structure of the paper closely follows [4]. In that paper we demonstrated an algorithmic procedure

for modifying any finite difference scheme so that the new scheme has the accuracy of the original scheme

but on a twice-fine mesh when time derivatives are not in the main balance of terms. The new scheme re-

sides on the same coarse-grid spatial stencil, has the same time step requirements as the original scheme
from which is was derived, is never less accurate than the original scheme, and in certain circumstances

removes nonphysical oscillations. The algorithmic approach was first introduced in [7].

The procedure discussed here is equivalent to iterating the algorithmic approach an infinite number of

times. However, rather than determining the fixed point of the iterations, which is possible, we modify the

truncation error directly and obtain the same result. We will see the limit scheme, which we call the mod-

ified scheme, inherits the same properties held by schemes derived from finite iterations of the algorithmic

approach, only it is higher order at steady state. If the time derivatives associated with the physical problem

are large however, the modified scheme will be less computationally efficient. When the time derivatives are
small, the extra cost is more than compensated by the increase in accuracy.

In Section 2 we apply our ideas to the one-dimensional heat equation. We repeat the same process in

Section 3 for the two-dimensional heat equation. In Section 4, we apply the procedure to the advection dif-

fusion equation. In this setting we see the mechanism for the removal of nonphysical oscillations. Similar

results are found for Burgers equation in Section 5. We also compare the modified scheme with finite iter-

ations of the algorithmic approach in [4] in this section. Section 6 concludes with an application to the shal-

low water equations.
2. One-dimensional heat equation

To illustrate the basic ideas we consider the one-dimensional heat equation with homogeneous Dirichlet

boundary conditions:
ou
ot

� kuxx ¼ f ðx; tÞ; 0 < x < L; t > 0;

uð0; tÞ ¼ 0 ¼ uðL; tÞ; t > 0.

ð2:1Þ
The constant k is positive. We assume a uniform spatial grid in all cases, and to shorten the exposition, we

employ the notation throughout
d2xui ¼
1

Dx2
ðuiþ1 � 2ui þ ui�1Þ; dxui ¼

1

2Dx
ðuiþ1 � ui�1Þ.
Suppose we are given the second-order finite difference scheme approximating the heat equation
dui
dt

� kd2xui ¼ fi; 1 6 i 6 N � 1;
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where N is given. The numbers ui approximate the nodal values of the solution to (2.1) at xi = iL/

N = iDx. Moreover, we leave the time derivative continuous since the specific time integrator used is

not important – we are only modifying the spatial truncation error. Temporal errors are assumed to

be small.

Starting with the heat equation, the starting scheme leads to
0 ¼ ut � kuxx � f

¼ ut � kd2xui � f þ ðkd2xui � kuxxÞ

¼ ut � kd2xui � f þ k
12

uxxxxðiDxÞDx2 þ OðDx4Þ. ð2:2Þ
The truncation error is Dx2uxxxx/12.
A more accurate scheme could be constructed by approximating the uxxxx term. Such an approximation

however would widen the stencil, adversely affect the time stability of an explicit time scheme, and compli-
cate the implementation of an implicit scheme. However, at steady state kuxxxx = �fxx. If we use this in

(2.2), we find the scheme
dai
dt

� k
Dx2

d2xai ¼ fi þ
1

12
ðfiþ1 � 2f i þ fi�1Þ ¼

1

12
ðfiþ1 þ 10f i þ fi�1Þ
is second order for all time and fourth order at steady state. At steady state, it agrees with the compact

differencing technique described in [2]. Moreover, since the discrete Laplacian is the same, the stability

of an explicit scheme time integration is the same. The proof the modified scheme is never less accurate than

the original is lengthy, and rather than presenting it, numerical verification of the constraints will be pro-

vided in later sections.
3. Two-dimensional heat equation

The same procedure applies in higher dimensions. Consider the two-dimensional heat equation on a

square, X, with homogeneous Dirichlet boundary conditions:
ou
ot

� jr2u ¼ f ;

ujoX ¼ 0.
Suppose N is a given natural number. On a uniform mesh, we take the starting scheme to be
dui;j
dt

� j
Dx2

ðuiþ1;j þ ui�1;j � 4ui;j þ ui;jþ1 þ ui;j�1Þ ¼ fi;j
for 1 6 i, j 6 N � 1. At i, j the scheme has truncation error 1
12
ðuxxxxðiDx; jDxÞ þ uyyyyðiDx; jDxÞÞDx2. To re-

place the higher-order derivative with lower-order terms, we again use the steady-state form of the PDE.

Indeed, the steady state equation �j$2u = f implies �j(uxxxx + 2uxxyy + uyyyy) = $2f. In order to use this,

the truncation error of the Laplacian must contain cross derivatives. We must modify the original

differences.

Remark. Since the difference schemes we derive here are an infinite number of iterates of the algorithmic

approach in [4], and the algorithmic approach is a procedure which acts on a given finite difference scheme

and creates a new one, we commonly refer to the result of our procedure as a modified scheme-even though

the procedure sometimes gives the appearance of constructing a difference scheme rather than modifying a

given scheme.



D.A. Jones / Journal of Computational Physics 209 (2005) 322–339 325
We set
au ¼ 1

Dx2
ðuiþ1;j þ ui�1;j � 4ui;j þ ui;jþ1 þ ui;j�1Þ;

bu ¼ 1

2Dx2
ðuiþ1;jþ1 þ uiþ1;j�1 � 4ui;j þ ui�1;jþ1 þ ui�1;j�1Þ.
Then
au ¼r2uþ Dx2

12
ðuxxxx þ uyyyyÞ þ OðDx4Þ;

bu ¼r2uþ Dx2

12
ðuxxxx þ 6uxxyy þ uyyyyÞ þ OðDx4Þ;
and, at steady state,
0 ¼ �jr2u� f

¼ �j
2

3
auþ 1

3
bu

� �
þ jDx2

12
uxxxx þ 2uxxyy þ uyyyyÞ � f þ OðDx4Þ

¼ �j
2

3
auþ 1

3
bu

� �
� Dx2

12
r2f � f þ OðDx4Þ.
This is the key estimated needed in the usual error analysis revealing that the scheme
dai;j
dt

� j
2

3
auþ 1

3
bu

� �
¼ f þ 1

12
r2f
is second order for all time and fourth order at steady state.
4. Linear advection diffusion and nonoscillatory properties

Before presenting numerical studies showing the improved accuracy of the modified scheme, we show its

ability to remove unphysical oscillations. We apply the method to the linear equation ut � muxx + Cux = f

with homogeneous Dirichlet boundary conditions. Suppose the starting second-order finite difference

scheme is
dui
dt

� md2xui þ Cdxui ¼ fi. ð4:1Þ
The truncation error is given in
0 ¼ ut � muxx þ Cux � f

¼ ut � md2xui þ Cdxui � f þ ðmd2xui � Cdxui � muxx þ CuxÞ

¼ ut � md2xui þ Cdxui � f þ m
12

uxxxx �
C
6
uxxx

� �
Dx2 þ OðDx4Þ.
To make the scheme more accurate, and not adversely affect the time step restrictions, we need to
approximate uxxxx and uxxx without widening the stencil. At steady state
uxxx ¼
1

m
ðCuxx � fxÞ; muxxxx ¼ Cuxxx � fxx.
Replacing the higher-order derivatives produces a scheme using the same stencil and is fourth order at stea-

dy state. In discrete form the modified scheme is
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dai
dt

� mþ C2Dx2

12m

� �
d2xai þ Cdxai ¼

1

12
ðfi�1 þ 10f i þ fiþ1Þ �

Dx2

12m
Cdxfi. ð4:2Þ
4.1. Nonoscillatory properties

For a fixed spatial resolution and viscosity, m, sufficiently low, an explicit Euler time scheme, for example,

produces nonphysical oscillations. The modified scheme however will be diffusive in this case. It will be

nonoscillatory at all times and for any value of m or initial data. Moreover, following the same analysis

in [4] the modified scheme is sign preserving for the choice of a forward Euler time scheme (uni P 0 implies

unþ1
i P 0). The relative accuracy of the modified scheme is not relevant in this parameter regime since the

original scheme is order one. For m sufficiently large that no nonphysical oscillations occur in the original
scheme, the new dissipative term conspires with the other corrections to make the scheme fourth order

when the time derivative is not the dominant term.

We illustrate the nonoscillatory properties in Fig. 1. We use m = 0.00003, C = .1, Dx = 1/60, and the

scheme is integrated to T = 1.5, Dt = 0.01 using an explicit Euler scheme.

Next we consider the advection–diffusion equation on a square, X, with homogeneous Dirichlet bound-

ary conditions:
ou
ot

þ C � ru ¼ mr2uþ f ;

ujX ¼ 0.

ð4:3Þ
The velocity C is constant. We modify the standard scheme
dui;j
dt

þ ðC1;C2Þ � ðdxu; dyuÞ ¼ mðd2x þ d2yÞui;j þ fi;j. ð4:4Þ
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Fig. 1. Standard scheme (4.1) and modified scheme (4.2).
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At steady state (4.3) implies
uxxx þ uxyy ¼
C1

m
uxx þ

C2

m
uxy �

fx
m
;

uxxy þ uyyy ¼
C1

m
uxy þ

C2

m
uyy �

fy
m
.

ð4:5Þ
Taking the Laplacian of the steady state,
mðuxxxx þ 2uxxyy þ uyyyyÞ ¼ C1uxxx þ C2uxxy þ C1uxyy þ C2uyyy �r2f . ð4:6Þ

To use (4.5) the third-order derivatives contained in the truncation error of the advective term should have

matching coefficients. This requires the use of averages in the approximation of the advective term. The

averages required are
C1

6
ðdxui;jþ1 þ 4dxui;j þ dxui;j�1Þ ¼ C1ux þ C1

uxxx
6

Dx2 þ C1

uxyy
6

Dx2 þ OðDx4Þ;
C2

6
ðdyuiþ1;j þ 4dyui;j þ dyui�1;jÞ ¼ C2uy þ C2

uyyy
6

Dx2 þ C2

uxxy
6

Dx2 þ OðDx4Þ.
As in the analysis of the previous equations, we start by replacing the error produced by the Laplacian

with (4.6). We find
0 ¼ ut � mr2uþ C � ru� f

¼ ut � m
2

3
auþ 1

3
bu

� �
þ C1

6
ðdxui;jþ1 þ 4dxui;j þ dxui;j�1Þ þ

C2

6
ðdyuiþ1;j þ 4dyui;j þ dyui�1;jÞ

� m
12

ðC1uxxx þ C2uxxy þ C1uxyy þ C2uyyyÞDx2 � f � Dx2

12
r2f þ OðDx4Þ.
Next we use the formulas for uxxx + uxyy + uyyy + uxxy in (4.5) to express the third-order derivatives in terms
of lower-order derivatives, and approximate the second-order corrections so that the new scheme is fourth

order when the time derivative is small. The new scheme, with corrections in continuous form, is
dai;j
dt

� m
2

3
aaþ 1

3
ba

� �
� Dx2

12m
ðC2

1axx þ 2C1C2axy þ C2
2ayyÞ þ

C1

6
ðdxai;jþ1 þ 4dxai;j þ dxai;j�1Þ

þ C2

6
ðdyaiþ1;j þ 4dyai;j þ dyai�1;jÞ ¼ f þ Dx2

12
r2f ¼ Dx2

12m
ðC � rf Þ. ð4:7Þ
Fig. 2 illustrates, as in the one-dimensional case, the positive definiteness of the modified scheme. A uni-

form mesh is used with Dx = Dy = 1/80, and the initial data is a Gaussian-shaped hill centered at the origin;

specifically, uðx; y; 0Þ ¼ 0.005e�500ðx2þy2Þ. We plot contours of the advected scalar computed from (4.4) and

(4.7) on a unit box with periodic boundary conditions. The time integration uses a second-order modified

Euler discretization with Dt = 0.001 and is integrated to T = 0.5. The velocity has components (1, 1), and

the diffusion constant is m = 0.0009. The modified scheme is highly diffusive, but remains positive definite

and monotone.
5. Burgers equation

In this section we consider the one-dimensional Burgers equation
ou
ot

� kuxx þ uux ¼ f ; 0 < x < L; t > 0;

uð0; tÞ ¼ 0 ¼ uðL; tÞ; t > 0;
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Fig. 2. Left: standard scheme (4.4). Right: modified scheme (4.7).
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and we suppose we wish to modify the given second-order scheme
dui
dt

� kd2xui þ
u2iþ1 � u2i�1 þ uiðuiþ1 � ui�1Þ

6Dx
¼ fi. ð5:1Þ
We proceed essentially the same way as in previous examples.

Burgers equation at steady state implies
uxx ¼
1

k
ðuux � f Þ; uxxx ¼

1

k
ððuxÞ2 þ uuxx � fxÞ; kuxxxx ¼ 3uxuxx þ uuxxx � fxx. ð5:2Þ
We first replace the truncation error produced by the Laplacian using (5.2). We find
0 ¼ ut � kuxx þ uux � f

¼ ut � kd2xui þ
1

3
ðdxu2i � uidxuiÞ � f þ k

uxxxx
12

� uuxxx
6

� uxuxx
3

� �
Dx2 þ OðDx4Þ

¼ ut � kd2xui þ
1

3
ðdxu2i � uidxuiÞ � f � uxuxx þ uuxxx

12
Dx2 � fxx

12
Dx2 þ OðDx4Þ.
Next we use the first two equations in (5.2) to find
ut � kd2xui þ
1

3
ðdxu2i � uidxuiÞ �

Dx2

12k
ðu2uxÞx � ðuf Þx
� �

¼ f þ fxx
12

Dx2 þ OðDx4Þ.
In discrete form the new scheme, fourth order at steady state, is
dai
dt

� dþx ðk
e
i d

�
x aiÞ þ

a2iþ1a
2
i�1 þ aiðaiþ1 � ai�1Þ

6Dx

¼ fi þ
d2xfi
12

� Dx
48k

� �
ðaiþ1 þ aiÞðfiþ1 þ fiÞ � ðai þ ai�1Þðfi þ fi�1Þð Þ; ð5:3Þ
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where
0
0

1

2

3

4

5

6

7

8

9

10

11

12

E
rr

or
 R

at
io

Fig.
kei :¼ k 1þ Dx2

12k2
ai þ ai�1

2

� �2
� �

; dþx ai ¼
1

Dx
ðaiþ1 � aiÞ; d�x ai ¼

1

Dx
ðai � ai�1Þ.
In Fig. 3 we use the exact solution u(x, t) = e (sin(px) cos(xt) + (1 � x) sin(xt)) + g sin(px). This solution
determines the forcing in Burgers equation. The left side of Fig. 3 shows the error ratio for the modified

scheme (5.3) and the enslaved scheme given in algorithmic approach of [4]. The error ratio is
RðtÞ ¼ maxijui � uðiDx; tÞj
maxijai � uðiDx; tÞj ;
where the ui solve (5.1), and the ai solve (5.3) or the scheme in [4], both using an improved Euler time dis-

cretization. Note that the ratio never goes below one for either scheme – the modified scheme is never less
accurate than the original. The right side of Fig. 3 shows the average ratio as x in the solution increases.

Large x implies a highly time-dependent solution with large time derivatives. The ratio approaches one for

increasing x as expected. The modified scheme�s ratio approaches 1/Dx for small x since it is higher order at

steady state. Meanwhile, the enslaved scheme approaches four – the accuracy of the twice-fine standard

scheme.

5.1. Nonoscillatory properties

As in the advection–diffusion equation, the modified scheme (5.3) is sign preserving for all values of the

viscosity, k, and at all times. The simple verification of this property follows exactly the one given in [4] for

the enslaved scheme. In addition, extensive studies of the nonoscillatory properties of the enslaved scheme

are given in [4]. Results for the modified scheme (5.3) are similar and are not repeated here.

5.2. Computational efficiency

We compute a critical error ratio in Fig. 3 which reveals whether or not the modified scheme is more
efficient than the standard scheme. Since the enslaved scheme in [4] is constructed from the original

scheme (5.1) on a twice-fine mesh, the cost per iteration is expected to be twice the cost of the original

scheme at any given resolution. The modified scheme (5.3) has exactly the same structure as the
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3. Left: error ratio versus time with � = g = 0.5, x = 2p, k = 0.5, Dx = 1/60. Right: long-time average error ratio as x varies.
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enslaved scheme, and hence the same expected cost. In practice, the modified scheme is roughly 70%

the cost. If the cost of the standard scheme is Cs/Dx per iterate for some constant Cs, the cost of

the modified scheme is 1.7Cs/Dx.
To determine the relative efficiency of the modified scheme, assumptions about the behavior of Dt with

changing mesh size must be made. Suppose the time step is diffusionally limited. That is, Dt 6 C1Dx
2 for the

scheme to remain stable. Given a time T and N such that T = NDt and a grid resolution Dx0, the cost to

integrate the modified scheme to time T is NCm=Dx0 ¼ TCm=ðDtDx0Þ ¼ 1.7TCs=ðC1Dx30Þ.
Now the resolution of the standard scheme (5.1) may be increase until it matches the cost of the modified

scheme. The cost of the standard scheme iterated to time T is TCs=ðC1Dx30Þ. Setting the two equal implies the

standard scheme can be computed on a grid with spacing Dx = (1.7)�1/3Dx0. Since the scheme is second

order, the error ratio of the standard scheme computed on Dx0 to the error computed on (1.7)�2/3Dx0 is

(1.7)2/3 � 1.42.

This leads to the following conclusion. If the error ratio in Fig. 3 falls below 1.42, the same accuracy can
be achieved cheaper by running the standard scheme at a higher resolution. If it is above 1.42 the modified

scheme is more efficient. Whether or not the modified scheme is more efficient depends on the size of the

time derivatives in the problem. If the time step is limited by the advection term, Dt 6 CDx, the critical ratio
is 2.
6. 2D shallow-water equations

In this section we apply the method to an equation in which the diffusion is not part of the balance of

terms in the PDE. In advective form the basin scale, double gyre, wind-driven, reduced-gravity shallow-

water equations (SWE) are
ut � Dþ uux þ vuy ¼ �g0hx þ fvþ F u;

vt � Dþ uvx þ vvy ¼ �g0hy � fuþ F v;

ht þ ðuhÞx þ ðvhÞy ¼ 0.
We consider the equations on a rectangular basin on a beta plane; the Coriolis force is by f = f0(1 + by) with
y in the north–south direction. The operator D is a diffusion operator (Laplacian, BiLaplacian, . . .), with
appropriate boundary conditions on u, v – the fluid velocity in the east–west, north–south directions respec-

tively. h is the fluid depth, g 0 is the reduced gravity, and Fu, Fv are external forcing functions. Here, we take
Fu = �scos(pu/Ly) and Fv = 0.

We consider a leapfrog time differencing combined with a B-grid centered in space algorithm. Specifi-

cally, the standard scheme is taken to be
unþ1
i;j � un�1

i;j

2Dt
¼ �g0dx�h

n
i;j � ðuni;jdxuni;j þ vni;jdyu

n
i;jÞ þ fi;jvni;j þ mðd2x þ d2yÞun�1

i;j þ F u
i;j;

vnþ1
i;j � vn�1

i;j

2Dt
¼ �g0dy�h

n
i;j � ðuni;jdxvni;j þ vni;jdyv

n
i;jÞ þ fi;juni;j þ mðd2x þ d2yÞvn�1

i;j þ F v
i;j;

hnþ1
i;j � hn�1

i;j

2Dt
¼ ��dx

ðuni;j þ uni;j�1Þðhni;j þ hniþ1;jÞ
4Dx

� �dy
ðvni;j þ vni�1;jÞðhni;j þ hni;jþ1Þ

4Dy
;

ð6:1Þ
where �dxgi;j ¼ gi;j � gi�1;j,
�dygi;j ¼ gi;j � gi;j�1, and the gradient of layer thickness in the momentum equa-

tions is
dx�hi;j ¼ ðhiþ1;jþ1 þ hiþ1;j � hi;jþ1 � hi;jÞ=2.
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To damp the computational mode we use a temporal filter that mixes a small amount of forward time inte-

gration at each time step. Specifically, we set
Table
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Fig. 4.

two, th
unþ1 ¼ ð1� vÞun�1 þ vun þ ð2� vÞRn;
where R is the right-hand side of the momentum equations, and v is a small parameter, typically near 1%.

The results of a high-resolution run of the equations, using the Earth-like parameters in Table 1, are

shown in Fig. 4. The initial data is u = v = 0, h = H0. The figure plots the maximum norm of each term

in the SWE versus time. Here, we take D = $2u with homogeneous Dirichlet boundary conditions on u

and v. As can be seen, the main balance is the geostrophic balance between the Coriolis term and the pres-

sure gradient.

The same procedure applies only, based on Fig. 4, we ignore the dissipative operator D. The nonlinear

and pressure gradient terms in the east–west momentum equation in (6.1) produce the truncation error
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or
1

6
ðuuxxx þ uuxyy þ vuxxy þ vuyyy þ g0hxxx þ g0hxyyÞ

¼ � 1

3
ðru � rux þrv � ruyÞ �

1

6
ðuxr2uþ uyr2u�r2ðfvþ F uÞÞ. ð6:2Þ
The discrete form of the nonlinear and pressure gradient terms needs to be modified so that the truncation

error matches the left side of (6.2)

We use the following approximations: for uux,
huuxi :¼
1

6
ðui;jþ1dxui;jþ1 þ 4ui;jdxui;j þ ui;j�1dxui;j�1Þ

¼ uux þ
Dx2

6
ðuuxxx þ uuxyyÞ þ Dx2

uyuxy
3

þ uxuyy
6

� �
þ OðDx4Þ;
for vuy,
hvuyi :¼
1

6
ðviþ1;jdyuiþ1;j þ 4vi;jdyui;j þ vi�1;jdyui�1;jÞ

¼ vuy þ
Dx2

6
ðvuyyy þ vuxxyÞ þ Dx2

vxuxy
3

þ uyvxx
6

� �
þ OðDx4Þ;
and for hx,
hhxi :¼
1

48Dx
ðhiþ1;jþ2 � hi;jþ2Þ þ ðhiþ1;j�1 � hi;j�1Þ þ

7

24Dx
ðhiþ1;j � hi;jÞ þ ðhiþ1;jþ1 � hi;jþ1Þ

þ 1

16Dx
ðhiþ2;jþ1 � hi�1;jþ1Þ þ ðhiþ2;j � hi�1;jÞ

¼ hx þ
Dx2

6
ðhxxx þ hxyyÞ þ OðDx4Þ.
With these approximations the truncation error of the nonlinear term and the height field includes the

terms on the left side of (6.2). The higher-order derivatives in the truncation error are replaced with the

lower-order derivatives from the right side of (6.2) and combine with the other lower-order terms. In this

way the second-order correction is approximated, and the following scheme is second order for all time and

fourth order at steady state
ut þ huuxi þ hvuyi ¼ �g0hhxi þ
f
6
ðviþ1;j þ vi;jþ1 þ vi�1;j þ viþ1;j þ 2vi;jÞ þ F u þ

Dx2

6
r2F u

� Dx2

6
ð3uxuxx þ uyvyy þ 2vyuyyÞ. ð6:3Þ
The approximation for the v equation is found by switching u and v, x and y, f with �f, and Fu with Fv.

The height equation works in a similar way. If we call the negative of the right side of (6.1) �d � ðuhÞ, then
0 ¼ ht þr � ðuhÞ ¼ dhi;j
dt

þ �d � ðuhÞ þ r � ðuhÞ � �d � ðuhÞ
� �

¼ fthe original schemeg

� Dx2

24
ð4ðuhxxÞx þ ðuxxhÞx þ 2ðuxhxÞx þ 3ðuyyhÞxÞ

� Dx2 ð4ðvhyyÞy þ ðvyyhÞy þ 2ðvyhyÞy þ 3ðvxxhÞyÞ.
24
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Because the truncation error is written in flux form, all of the terms are easy to approximate near a bound-

ary except the terms (uxxh)x and (vyyh)y. They will be replaced using the steady state equation. At steady

state $ Æ (uh) = 0 or $2$ Æ (uh) = 0. This implies
�
ðuxxhÞx þ ðvyyhyÞy

24
¼ 1

24
ð2ðuxhxÞx þ 2ðuyhyÞx þ ðuhxxÞx þ ðuyyhÞx þ ðuhyyÞxÞ þ

1

24
ð2ðvyhyÞy þ 2ðvxhxÞy

þ ðvhyyÞy þ ðvxxhÞy þ ðvhxxÞyÞ.
A scheme second order, fourth order at steady state, with corrections in continuous form, is
fthe original schemeg ¼ Dx2

24
ð3ðuhxxÞx þ 2ðuyyhÞx þ 3ðvhyyÞy þ 2ðvxxhÞy � 2ðuyhyÞx � 2ðvxhxÞy

� ðuhyyÞx � ðvhxxÞyÞ. ð6:4Þ
6.1. Computational efficiency

As argued above for Burgers equation, the cost per iteration of the modified scheme (6.3), (6.4) is

approximately equal to the cost of the standard scheme (6.1) but on a twice-fine mesh. The extra cost is

observed in this case. The computational savings arise from the time step properties of the modified scheme.

At a given spatial resolution it has the same time step restrictions as the standard scheme, but produces
dynamics consistent with original scheme computed on a more resolved spatial mesh. The CFL condition

implies Dt 6 Dx/V. If the cost of the standard scheme run to time T is C at some resolution, the cost of the

standard scheme on a twice-fine mesh is 8C, on a three-times fine mesh is 27C. . . , while the cost of the mod-

ified scheme is 4C. However, since the modified scheme�s dynamics is neither that of the twice or three-times

fine standard scheme, a precise estimate of the CPU savings is difficult.
6.2. Numerical studies

We use (6.3) and (6.4) and the values in Table 1. We take D = $2u with homogeneous Dirichlet boundary

conditions on u and v. The brief statistical analysis presented is similar to the one given in [5].

We set the domain averaged kinetic energy to
EðtÞ ¼
Z
X

1

2
hðx; y; tÞðu2ðx; y; tÞ þ v2ðx; y; tÞÞ

� �
dX.
In Fig. 5 we plot E(t) versus time and the associated histograms for various resolutions. As can be seen in

the histograms, the low Dx = 40 km resolution standard scheme has a much higher and broader energy dis-

tribution compared to the standard scheme with resolution Dx = 10 km. A doubling of the spatial mesh,

Dx = 20 km, still produces a scheme with incorrect kinetic energy distribution. Alternatively, the modified

scheme has a histogram in close agreement with the standard scheme computed on spatial meshes three,
Dx = 13.3 km, and four times refined, 10 km.

In the final two figures we examine the mean and the first three eigenvectors of the upper layer

depth field correlation matrix (the first three Empirical Orthogonal Functions) computed over a 60-year

time span beginning at year 10. The left side of Fig. 6 shows the mean of the standard scheme com-

puted on a grid with Dx = 40 km. The modified scheme with resolution Dx = 40 km, the standard

scheme with resolution Dx = 20 km, and at the bottom the standard scheme with Dx = 13.3 km. Notice

the modified scheme matches the 13.3 km run – the standard scheme with a three-times refined mesh.
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Fig. 6. Left side: mean field. Right side EOF 1. Top: low-resolution standard scheme. Second down: low-resolution modified scheme.

Next two: high-resolution standard scheme.
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Fig. 7. Left side: EOF 2. Right side EOF 3. Top: low-resolution standard scheme. Second down: low-resolution modified scheme. Next

two: high-resolution standard scheme.
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The right side of Fig. 6 shows the first eigenvector. Fig. 7 shows the second and third eigenvectors with

the resolutions in the same order as in the previous figure. Again the modified scheme using at the

40 km resolution most closely matched the standard scheme in the three-times refined mesh.

6.3. Conclusions

We have effectively iterated an infinite number of times an algorithm which both improves the accu-

racy and stability properties of any given finite difference scheme. The fixed point of the iteration is a

scheme which is higher order in the absence of time derivatives. This procedure reduces the overall trun-

cation error of the given finite-difference scheme by taking advantage of balances present in the governing

equations.

We have shown, numerically, that the modified scheme is never less accurate than the original scheme.

Moreover, the stability of the modified scheme is the same as the original scheme, in part, because the pro-
cedure does not increase the size of the spatial stencil on which it is computed. The larger time step more

than compensates for the added computational expense when time derivatives are not part of the balance of

terms in the governing equations.

The procedure applied to a chaotic geophysical flow indicates the modified scheme, run on coarse grids,

captures the dynamics and statistical features of more resolved flows.
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Appendix A. 2D Burgers equation

To illustrate the procedure on an equation functionally similar to the shallow water equations but one in

which the diffusion is a significant term, we consider the two component, two-dimensional Burgers equa-

tion. We ignore questions of global existence of solutions etc. Specifically, the procedure is applied to
ou

ot
� kr2uþ ðu � rÞu ¼ Fþ fk� u.
As before, we consider the equation with homogeneous Dirichlet boundary conditions on a square. The

general algorithm for producing the modified scheme is as follows:

� Express the highest-order derivatives in terms of lower-order derivatives using the steady-state PDE.

This will create many new lower-order derivatives.

� Re-difference, typically using averages, the lower derivatives in the original PDE in such a way that the

formulas found in step one may be used.
� Replace higher-order derivatives using the steady-state PDE.

We work with the u component. At steady state
r2u ¼ 1

k
ðuux þ vuy � fv� F uÞ;
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uxxx þ uxyy ¼
1

k
ðu2x þ uuxx þ vxuy þ vuxy � fvx � F u

xÞ; ðA:1Þ

uyyy þ uxxy ¼
1

k
ðuyux þ uuxy þ vyuy þ vuyy � fvy � F u

yÞ;

kðuxxxx þ 2uxxyy þ uyyyyÞ ¼ r2ðuux þ vuyÞ � fr2v�r2F u. ðA:2Þ
The truncation error of the Laplacian will produce a term proportional to (A.2). Its replacement, using
(A.2) will in turn produce 16 new terms in $2(uux + vuy). They need to combine with the truncation terms

produced by the re-differencing of the nonlinear term. Several constraints apply. We suppose the new dif-

ferencing should reduce to the one-dimensional Burgers equation, (5.1), when the solution does not depend

on y or v. In particular, it should have the Arakawa differencing of the nonlinear term. Second, like in the

linear 2D advection diffusion case, certain third-order derivatives need to balance so that (A.1) may be

used.

We consider three approximations of the nonlinear term. They are constructed as follows. The compu-

tational grid is the same as we used for the two-dimensional heat equation.
huiiþ1
2
;jþ1

2
¼ 1

4
ðui;j þ uiþ1;j þ uiþ1;jþ1 þ ui;jþ1Þ
and
huxiiþ1
2
;jþ1

2
¼ 1

2Dx
ðuiþ1;jþ1 þ uiþ1;j � ui;jþ1 � ui;jÞ.
Like the one-dimensional burgers equations, we difference uux two ways,
huuxi1 ¼
ui;j
2Dx

ðuiþ1;j � ui�1;jÞ;

huuxi2 ¼
1

4
huiiþ1

2
;jþ1

2
huxiiþ1

2
;jþ1

2
þ huii�1

2
;jþ1

2
;jhuxii�1

2
;jþ1

2
;j þ huiiþ1

2
;j�1

2
;jhuxiiþ1

2
;j�1

2
;j þ huii�1

2
;j�1

2
;jhuxii�1

2
;j�1

2
;j

� �

¼ uux þ
uuxxx
6

þ uxuxx
2

þ uuxyy
4

þ uyuxy
4

þ uxuyy
4

� �
Dx2 þ OðDx4Þ.
Similarly, for the approximation of the vuy term, we set hviiþ1
2
;jþ1

2
in the same way the Æuæ counterpart was

constructed. In addition,
huyiiþ1
2
;jþ1

2
¼ 1

2Dx
ðuiþ1;jþ1 þ ui;jþ1 � uiþ1;j � ui;jÞ.
As before, we consider two approximations. They are
hvuyi1 ¼
vi;j
2Dx

ðui;jþ1 � ui;j�1Þ;

hvuyi2 ¼
1

4
hviiþ1

2
;jþ1

2
huyiiþ1

2
;jþ1

2
þ hvii�1

2
;jþ1

2
;jhuyii�1

2
;jþ1

2
;j þ hviiþ1

2
;j�1

2
;jhuyiiþ1

2
;j�1

2
;j þ hvii�1

2
;j�1

2
;jhuyii�1

2
;j�1

2
;j

� �

¼ vuy þ
vuyyy
6

þ vxuxy
4

þ vuxxy
4

þ vxxuy
4

þ vyuyy
4

þ vyyuy
4

� �
Dx2 þ OðDx4Þ.



D.A. Jones / Journal of Computational Physics 209 (2005) 322–339 339
Finally, using (A.2) and the truncation error for the nonlinear terms,
0 ¼ ut � kr2uþ ðuux þ vuyÞ � fv� F u

¼ ut � k
2

3
auþ 1

3
au

� �
þ 1

3
ðhuuxi1 þ hvuyi1Þ þ

2

3
ðhuuxi2 þ hvuyi2Þ � fv� F u

� 1

12
uuxxx þ uuxyy þ vuyyy þ vuxxy þ uxr2uþ uyr2vþr2ðvf Þ þ r2F u
� �

Dx2 þ OðDx4Þ.
Now we use (A.1) and the steady state formulas for $2u and $2v to find the scheme
ut � k
2

3
auþ 1

3
bu

� �
þ 1

3
ðhuuxi1 þ hvuyi1Þ þ

2

3
ðhuuxi2 þ hvuyi2Þ �

Dx2

12k
ðu2uxÞx þ ðv2uyÞy þ 2ðuvuyÞx

� �

þ Dx2

24k
2f ðuvÞx þ f ðv2 � u2Þy

� �
¼ fvþ f

r2v
12

Dx2 þ F u þr2F u

12
Dx2 � Dx2

12k
ðuF uÞx þ vF u

y þ uyF v
� �

.

We immediately notice the new dissipative term and correction to the Coriolis term conserve momentum.
The equation for v is found by switching u with v, x with y, and changing the sign of f. The result is
vt � k
2

3
avþ 1

3
av

� �
þ 1

3
ðhuvxi1 þ hvvyi1Þ þ

2

3
ðhuvxi2 þ hvvyi2Þ �

Dx2

12k
ðv2vyÞy þ ðu2vxÞx þ 2ðuvvxÞy

� �

� Dx2

24k
2f ðuvÞy þ f ðu2 � v2Þx

� �
¼ �fu� f

r2u
12

Dx2 þ F v þr2F v

12
Dx2 � Dx2

12k
ððvF vÞy þ uF v

x þ vxF uÞ.
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